Mandatory Critical Points of 2D Uncertain Scalar Fields
نویسندگان
چکیده
This paper introduces a novel, non-local characterization of critical points and their global relation in 2D uncertain scalar fields. The characterization is based on the analysis of the support of the probability density functions (PDF) of the input data. Given two scalar fields representing reliable estimations of the bounds of this support, our strategy identifies mandatory critical points: spatial regions and function ranges where critical points have to occur in any realization of the input. The algorithm provides a global pairing scheme for mandatory critical points which is used to construct mandatory join and split trees. These trees enable a visual exploration of the common topological structure of all possible realizations of the uncertain data. To allow multi-scale visualization, we introduce a simplification scheme for mandatory critical point pairs revealing the most dominant features. Our technique is purely combinatorial and handles parametric distribution models and ensemble data. It does not depend on any computational parameter and does not suffer from numerical inaccuracy or global inconsistency. The algorithm exploits ideas of the established join/split tree computation. It is therefore simple to implement, and its complexity is output-sensitive. We illustrate, evaluate, and verify our method on synthetic and real-world data.
منابع مشابه
Visualizing the stability of critical points in uncertain scalar fields
In scalar fields, critical points (points with vanishing derivatives) are important indicators of the topology of iso-contours. When the data values are affected by uncertainty, the locations and types of critical points vary and can no longer be predicted accurately. In this paper, we derive, from a given uncertain scalar ensemble, measures for the likelihood of the occurrence of critical poin...
متن کاملVisualization of Global Correlation Structures in Uncertain 2D Scalar Fields
Visualizing correlations, i.e., the tendency of uncertain data values at different spatial positions to change contrarily or according to each other, allows inferring on the possible variations of structures in the data. Visualizing global correlation structures, however, is extremely challenging, since it is not clear how the visualization of complicated long-range dependencies can be integrat...
متن کاملCombinatorial Feature Flow Fields: Tracking Critical Points in Discrete Scalar Fields
We propose a combinatorial algorithm to track critical points of 2D time-dependent scalar fields. Existing tracking algorithms such as Feature Flow Fields apply numerical schemes utilizing derivatives of the data, which makes them prone to noise and involve a large number of computational parameters. In contrast, our method is robust against noise since it does not require derivatives, interpol...
متن کاملUncertain 2D Vector Field Topology
We introduce an approach to visualize stationary 2D vector fields with global uncertainty obtained by considering the transport of local uncertainty in the flow. For this, we extend the concept of vector field topology to uncertain vector fields by considering the vector field as a density distribution function. By generalizing the concepts of stream lines and critical points we obtain a number...
متن کاملBuilding and Generalizing Morphological Representations for 2D and 3D Scalar Fields
Ascending and descending Morse complexes, defined by the critical points and integral lines of a scalar field f defined on a manifold domain D, induce a subdivision of D into regions of uniform gradient flow, and thus provide a compact description of the morphology of f on D. Here, we propose a dimension independent representation for the ascending and descending Morse complexes, and a data str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 33 شماره
صفحات -
تاریخ انتشار 2014